Micro-fabricated Ion Energy Analyzer*

J. Stevens, M. Blain, T. Bauer Microelectronics Development Laboratory Sandia National Laboratories

- -M. Blain, J. Stevens, J. Woodworth, APL <u>75</u> (1999) 3923;
- -M. Sowa, M. Blain, R. Jarecki, J. Stevens, APL 80 (2002) 932.
- -P. Kraus, T. Chua, C. Olsen, T. Bauer, IEEE-NANO-2004 (Munich, Aug17-19, 2004).
- -P. Kraus, T. Chua, et. al., 205th Meeting ECS (San Antonio, TX, May9-13, 2004).

*Work partially supported by SEMATECH

Goal: develop an ion diagnostic for plasmas used in semiconductor processing.

Why Micro-fabricate Ion Energy Analyzer?

- Small size (can be put on top of a Si wafer)
- Nearly ideal hole alignment
- Very few ion neutral collisions
- Good energy resolution in theory (~0.2%)

modeling

Typically there is 1 ion at a time in the analyzer. The collector should be able to resolve ion energy differences of <1% at 50eV.

Energy Analyzer Fabrication

SEM Images of IEA

- 670,000 holes
- 0.5% open area

Finished IEA

Experimental Setup

Laboratories

Collector current & IED vs. voltage

Process conditions:

150 W RF power10 mTorr N₂Inductively coupled plasma

Ion energy distribution vs. pressure

Ion energy distribution vs. pressure

Ion energy distribution vs. RF bias

Inferred T_e from I.E.D.

- Model assumes that the ion energy distribution is developed in the presheath, then ions are uniformly accelerated across a collisionless sheath. [K.U. Riemann, Phys Fluids 24(12), 1981.]
- Peak ion energy predicted at 5.7 T_e.

T_e from IEA vs. Langmuir probe

Distance from Dielectric Window (mm)

IED in a Pulsed Plasma

Bauer, et. al.

Process conditions:

Inductively coupled plasma source

10 kHz pulse rate, various duty cycles.

150 W time-averaged source power.

10 mTorr N₂

With reduced duty cycle, the population of highenergy ions decreases and low-energy ions increases.

Conclusions and Comments

- The micro-fabricated IEA worked as expected.
- Ion energy distribution is determined by the presheath.
- T_e trends agreed qualitatively with Langmuir probes.
- Fabrication used standard MEMS operations, although we did not use the standard SUMMiT[™] lot flow.
- It took several iterations to correct process and operational issues.
 There are 7 mask levels and ~120 process steps.
- Packaging is important. The goal was for the IEA to be a plug-in part.
 A lot of time was spent on making holders, epoxy packages, and
 improving leads.

General Comments for the MDL Facility

- MDL processes are rigorously controlled, for delivery of radiation hard IC's and MEMS parts.
 - You get what you ask for.
 - With 10's of products in the line at a given time, it is important that they don't affect each other.
- Material choices must be compatible with silicon CMOS.
 - Conductors: AI, W, Ti, TiN, poly-Si
 - Insulators: SiO₂, SiN, AIN, SiON
 - Other materials (Ni, Au, Pt) available at post processing.
- There are limitations on device size and thickness.

Microelectronics Development Laboratory (MDL)

